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ABSTRACT

Discretization formulas for the'aigital simulation 6f the dif-
fusional processes associated with a variety of electrochemical processes
at a spherical electrode are given. The formulas are based on orthogonal
collocation technigues. Several mechanisms are represented, and the
technique is demonstrated for chronoamperometry, chronopotentiometry,

and cyclic voltammetry.
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Orthogonal collocation techniques for the simulation of second
order partial diffcrential equations have been demonstrated for a
variety of problems in electrochemistry (1-7}, chemical engineering
[8-11]), differential scanning calorimetry [12], and other fields [13].
The advantages over other mcthods have been described, but noteworthy
is generally increased accuracy for decreascd computational effort
{1-71.

In electrochemical diffusion problems, the algorithms needed to
compute concentration profiles, chronopotentiograms, chronoamperometric
responses, spectrophotomeiric responses of individual species, cyclic
voltammograms, and chronocoulometric responses, all to planar electrode
configurations, have been given. This paper deals with some of the
same experiments appiied to a common configuration, the static
spherical electrode (Figure 1).

The programs for solving the equations described herein have
been given [7]. Basically, the orthogonal collocation technique is
implemented by the following steps:

1. Make the Fick's laws equations suitably dimensionless.

2., Discretize the resulting equations at the roots (zeros) of an
orthogonal polynomial of suitable symmetry. The resulting set of
equations are now first order ordinary differential equations.

3. Integrate thc set of simultaneous differential equations to obtain
the set of concentration profiles with respect to distance f{rom
the electrode surface and with time.

4. Use these concentrations in the suitably discretized equations

to obtain the desired electrochemical parameter (current, absor-

bance, etc.).




Chronoamperometry

We will only consider diffusion on the solution side of the

electrode-solution interface. For a chronoamperometric experiment on

the simple charge transfer mechanism at a spher’cal electrode 1

ne
A—/HB (1)

-

we have the following imposed conditions:
= = N
[Alg o [A]w'T (A°]

(Al 2= 1Bl q = [Blg,q =0 (2)

(a_r_w_) - _<§r~m_)
R Jrer,  \F Jrer

where R is the distance parameter (radial) from the center of the

0

spherical electrode and r, = the radius of the electrode. Since
, interpolation methods using orthogonal polynomials are simpler to use
in a [0,1]) interval, we will define M as some distance in the R

direction such that no diffusion effects are experienced there during

the time frame of the experiment. The differential equation for the

A species is:
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A {A®] (M-ro)z ,
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We note then that




dR

(M-io)dr

Substitution of the new variables (4) into (3) gives

2
o o
DA[A ]écA _ DA[A }1é < . 2DA )[A°]6CA )
2 2, .2
(M ro) 6t (M ro) éxr (M ro)r+r0 (M-ro)cr
which, after simplification, leads to
§c 62c 2 §c
A _ g + A (7)
6t Sr r + B 6r
where
B = 0
M—r0

The general spatial derivatives in terms of their polynomial inter-

polation coefficients [l1] are given by

N+2
a9 = I A, . Q(X., t) (8a)
A% fx=x. g=1 1ed 7 Js

i
2 N+2
(d—-g) = I By 00 (8b)
L ’ 4
dax x=xi j=1

where N is the order of the approximation polynomial chosen, the Xi
represents the roots of that polynumial collocation points, and the

Aij and Bij are given by [10]
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0 1
dxl/dx dxl/dX

0
dxz/dx

0 .
de+2/dh

dzx‘l’/dx2 dzxi/dx2 ------ dsz+2/dx -1
2
[Bij] = d“xg/dxz s (10)
2.0 2 L 2N+2 ... J
a®x3, ,/ax — a®xN+2/ax ,

The matrix [S] is given by

0 LI N+2
X0 %o X0
_|<0  ____
[S]) = hl (11)
0 N+2
XN+ 2 T XN+2

The algorithms for finding the roots of any orthogonal polynomial and
the corresponding [Aij] and [Bij] matrices have been given previously
[9]. The N+2 tcrms arise because X=0 and X=1 are included as roots to
the orthogonal polynomial. The concentration profile will be eval-
uated at the collocation point, i.e. at coencentric spheres surrounding
the spherical electrode. Fach sphere has radius r=X1, Xz, X3, etc.,
i.,e. at thc collocation points.

Equation ( 7) is thus written in terms of (Ba) and (8b) at the
discrete points Xi:

ch N4+2 N+ 2

e Ex3 . .C -, & e . . . 12
r.=x. jzl BJJCA(’J,t) r z AIJCA(rJot) (12)
p i

. - - . e =




Thus we have N+2 simultaneous first order differential equations to
solve for the N+2 cA(rj't) unknowns. Any one of several methods may
be used for solving this system of eduations {1,4,9].

Inserting the boundary conditions (2 ) further defines the
electrochemical method used, and reduccs the number of equations from
N+2 to N. This is done by first expanding equation (12) partially,

exposing the boundary points at r1=xl=0 and rN+2=xN+2=l:

dCA N+1
| - Bi,ch(o't) + Bi,N+2CA(l't) + _E Bich(rj,t) +
r.=X. =2
i i
) N+1
£95 [Pa, 1A (008 Ay epCa (et) T Ry ley ) Y

We have from the oriéinal boundary conditions (2 ) that cA(O,t) =0

and cA(l,t) = 1, so that (14) beconres

A N+1 2 N+1
I = Bi,N+2+j£2 Bich(rj.t)+;I¢§ Ai,N+2+j£2Aich(rj,t) (14“

So we have one eguation to solve at cach of thc N interior collocation

points Xi, i=2, ...N+1 for the N unknown CA(rj t).
’

The concentration profile for the B species is derived similarly,

and lcads to identically the same result as equation (12):

2 N+2

dc = X Bi.c (r.'t)+—-—- I A

- (r, t) (15
ro=X, §=1 3BT XM 40

, . C
1 1) B "1,

Partial expansion leads again to cquation (13) with cB(rj t) substituted
’

for the cA(rj t). However, cven though it is true that one boundory
’




condition, cB(i,t) = 1 may be immediately substituted, the other boundary‘
condition cB(O,t) is not known explicitly. This problem is easily

resolved in collocation methods. We observe that the flux relation

dc dc
dr r , dr -

We will let DA=DB here for convenience even though it presents no
problem in setting up the eguations if we do not [1,4]. The flux
relation is replaced by equation (8a) on each side:

N+2 N+2

ifl Al,ch(rj,t) = -ifl Al,jCB(rj,t) (17!

Partially expanding so that known conditions may be inscrted, we have

N+1
(1,t)+ £ A
i=2

A1,1% 1,N42% 1,3
N+1 ;
c.(r. 18
(1,t)+ ¢ Al'JcB(rJ't)] (

S LSIRLNC R S =z

Inserting known quantities, we deduce

Nt1l N+1
+ ¥ . .ty = - )+ . .
Al,N+2 i:l Al,JcA(rJ,L) [Al,ch(o't) iiz AI'JCB(rJ't)] (19)
Solving for our unknown boundary condition,
N+
L, (0,t) = + T .y L (e . t) + .t 2
cp(0.t) U oo Ll,](CA(rj,t) CB(rJ't)) ( 0{
where
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We can

now substitute this explicit value for cB(O,t) in equation

(15), along with cB(l,t) = 0 to obtain the equation necessary to

represent the concentration profiles for B:

ch N+1 N+1
- =V, + I D,.c,(r., t) + I E..c_ (r. t)
dt r =xi j=2 137273, j=2 ij B 73,
where
2Ai 1Y
-— [
V1 = Bi,lT + T 48
i
23,
= i,l
Piy = Ci,5Bi,1 * T +8
2Ai 1 2Aii
» = Bl . .16 + ! —
Eij Blj + Cl,j Cl,l ri+e + ri+6
Again we have N equations in the N unknown cB(rj t) to solve

simultaneously,
Table 1 compares results obtaincd for the current obtained by

equation (33) and the anaslytic solution for this case, which is

nFap, '/ 2(a°]  nFAD, [A°]
i = ——=F——— + e
7,1/2,1,]/2 r0
We use, by exampln, DA = 1, » 10"S cmzs-l, [A°) = 10-6 molcs cm-3,

A = nrg, ry = 0.1 em, and n = 1. £ for thc example was 104.

For the wmechanisnm,

RUS VNP N WL W 9

(22

I
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AZ—="B—>>C
the profile for the A species is the same as equation (14). The B
species has a different profile due to loss of material through the

chemical reaction, i.e.

62my , 20p 1B) X [B] (23)

B sr2 R 6R

(B}
6t

=D

After discretizztion to the collocation points and insertion of the

dimensionless variables (4 ), we have

ch _N; 5
dt r.=X. j=1
173

2 2 N+2

.. . + —— . . - .
1,3°B(r3,t) ri+B jil Al'JcB(rJ't) acB(rl,t) (24]

where k(M—r0)2

a =
DB

Continuing precisely as for the simple electron transfer case,
except with the addition of this last chemical kinetic term, we find

that

ch N+1 N+1
ack | .- Vi+-i Dich(rj,t)+.E EijcB(rj,t)—acB(rj,t) (25
r.=X, j=2 j=2
i i
For the catalytic mechanism
k
A—B->»C+4A (26

both the A and B profiles arc modified by the presence of the chemical

reaction. The differentiual egquations are

2 2D

o] ;9 R 0.9 B S R 1Y
5t - PaT t o e *OKIBI (27
UR
618 _ o 8201, 2O s1BL g
ot B 6R2 R OR

The boundury conditiong arc exactly as the previous cascs, sO0 that

discretization is Lhe same. We find that

N e e . - - . PR G A T N - - ]
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ch N+1 2 N+1
= =B. v B..c (r. t)+—— + I A,.c,(r. )]+
dat r.=X. i,N+2 o 1) A T3, Y. +P[ i,N+2 j=2 ij A( s )]

i1

“CB(rj,t) (28)
ch N+1 N+1
— + L D..c.(r. )+ ¥ E..c (r. t)-uc,_ (r. t) (29}
dat r.=x j=2 iy A 73, j=2 ij B 73, B3, H

again letting N DB'

To calculate the current at any time for the mechanisms listed

above under the chronoamperometric experiment, we note the following:
; - nFADA(é}igl (30:
R=0

where A is the electrode surface arca and F is the Faraday constanti.

The flux term is converted to dimensionless terms by insertion of

the newly defined variables (4).

nrap{ac) [9Ca

= (31

M-xy  \IT Jro=x.=0
1771

The flux term may then be discretized to

N+1
_nFAD[A®]
1-—7q:f;—— [A) 1650, 814R) 0 o0, (1 t)+)z2 A1, (ry, 0] (32
or
N+1
j-NCADIAC] :
i= HoT [Al,N+2 + j£2 A]'ch(xj't)] (33

after inscrtion of the known values of CA(O,t) and cA(l,t).

So the current i may Le caleulated at any time

(M- r, ) 2¢
T := —»-—B—-— by insertion of the calculated concentrations from

— s m . e e . W e e P A NGy
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equations (14) or (28) into equation (33). If there are ad-
ditional electroactive species in the mechanism, their contribution

is simply added into equation (33), since generally,

_ prAp(a°) ¥ ey
M-r, =1 \9r r=X,=0

where m is the total number of electroactive species.

The charge or spectroelectrochemical absorbance can be cal-
culated by use of Gauscien quadrvature weights [4,9,10}] for the
integration of the current in time or the concentration profiles in

time,

Cyclic Voltanmnmetric Response

Several modifications have to be made to the mcethod of Speiser
and Rieker (6] to devclop the cyclic voltammetric responses for the

spherical eclectrode. We define new dimensionless time and distance

variables
t:P_'.l_a____é.
(M—ro)
and
(R-xr )al/2
_ 0
I = —WM-r_
0
where
a = nFv/R'T!
with v = the potential sweep rate in volts s-l,lv the gas constant,

and T' the temperature, Thus,

2
(M ro) d&

AT = =l -

and

(34)

(35)

. - I PP NG W




(M-ro)dr '
dR = ———177— (36)

a

For the simple electron transfer reaction (1), the differential

} equation (6 ) becones
aD[A°]sc, ap[a°)s%c 2D[A°] sc .
A _ A A .
2., 7 2t (37)]
I (M-ro) &t (M-ro) §r ((M-ro)r4ro)(M—r0) ér 1
which simplifies to
6CA éch 2a1/2 6cA i
= 5 + (38)
St §r r+8 Sr i
i The derivation now proceeds as described by Speiser and Rieker
§ [6].
i The cyclic voltammetric boundary conditions are
|
! - = [a°
: [A]R;O = [A]m't = [A®°] 1
Bla;o = [Bla,e = 0 (39),
' §(A) _ _&[A)
| SR =0 SR R=0
(Al
OIT_ .e - > 4
TE]—O—T—-eXp[nF/R'T'(EA/B E)] OA/BS).(t)
’

Inserting the potential sweep rate (14) v, we have

p —— g W WPy

= 2 o) "oy ® -
eA/B-cAp[nP/R T (F E

‘A/B ‘START)]

Ll

—-——

exp (=nFVvT/R'T') = exp(-aT) for T f.'rA
SA(T) =

explat - 2aTA) for T T > 27

.
—

(40)1

A:

e -
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where T 1is the time when the forward potential sweep is reversed.

We convert equations ( 39

ized to t and M:

cA(r.O) = cA(l,t) =1
CB(roo) = CB(llt) = 0
GcA _ -GcB

4 = [

¢r r=0 T Jr=0
cA(O,t)

-C—B—(O't) = eA/BS)\(t)

) to dimensionless form normal-

Discretizing using equations (8a) and (8b) on (38), we have

ch N+2
E =3I B..c,(r, t)
At lr=x; =1 PR3

or after partial expansion

ch
_— =B, c (0, t)+B
at |, -x, 1

i i

2a1/2

;I;E— [A1,1 A(0 t)+A

(N+2°A

Inserting the explicit boundary conditions, we have

ch
at |, “Bj,16,00.)4B;
r.=X.
] ]
N+1

i,N+2 J A o

=2

+ ) A (r. t)]

(41)
2172 ns2
— L A, (r. t) (42)
ri+3 j=1 ij A Je
N+1
c, (1,t)+ 22 Bich(rj,t) +
J_
N+1
N+2° (1,t)+ Z A, i3 A(rj,t)] (43)
j=2
N+1 2a1/2
2rji?BlJ A( 3, t) + F;?ﬁ“[Ai,]CA(O’t)

(44)

e oo PN S Ny
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Identical treatment for the B species yields

dCB N+1 2a1/2
ven =B. Cc 0 + ¥ B.. - . <8 ___ (A , +
at | .y i1 p(0,t) jiz ljcn(lj't) + 7,70 [A; 1cg(0,t)
i 7i
N+1
T A..c (r. t))
j=2 1) B J.

We discretize the flux rclation in (41) to get an equation relating
cA(O,t) and cB(O,t), presently implicit boundary conditions.
N+2 N+2

§ A .c (r, t) = -3 A
j=1 k,3 273, j=1

1.5%73, Y

Rieker and Speiser [6] showed that after expansion of eguation
(46), one may then substitute in equation (44) and arrive at the
following result giving the time (potential) dependence of cA(O,t)
and cB(O,t):

5. (t) N+1

)
A/B7)
c,(0,t) = - A + £ A, .(c,(r, t)+c (r. t))
A A1’1[l+6A/BSA(tT] 1,N+2 j=2 1,3 A3, B 73,

+

N+l
1l
c,(0,t) = - A + T A, .(c,(r. t)+c, . (r. t))
B Ay, [I+ep pSy (B)] L N+27 571, 5 A T g, RT3,

Inserting these time dependent boundary conditions into the dis-

cretized equations (44) and (45) yield the 2N simultancous first crder

differential eguations necessary to solve for the concentration profiles

(45)

(46)

(47%

in time:
ch N+1 N+l
— =W, T F..c_(r. t) + ¥ G,.c_ (r. t)
dt r =X, i 3=2 ii"atti, j=2 i) B 73,
-— - - - e . ..‘......._......._....__....-v'\;._r-l" \\. e -




ch N+1 N+1
=5 = X. + I H, (r ) + T I, (r ) ]
dt - i ij a I, ij °s jot
ri Xi j=2 R j=2 ?;
with é
Wy == A/B ?;i; S OT 81,17, ne2? 2a4/2 By aPrne2) Y
1 1 /B A 1, N+2 ' r 48 (171,N+ |
' B +2a1/_2 A
i,N+2 ri+B i,N+2
1/2
2
, = B__+Z?1/" A - 2a7" Ay 4By 48a /85, (E)
! ij ij r +g ij (ri+p)A ,l[l+OA/BSA(t)] ¥
: f
) 1,1 1,3 A/B A(t)
\| Ay 1[1-8, S, (£)] |
| s, (t 2al/2
; G.. == A/B (t) B A, 4+ 2 illAllj]
‘ ij 1’1[l+6A/B A(t)] i, 171,53 (ri+B)
{
{: L e P s 07181, 1P, ne2? 2ai/2 Bi, 1P, ne2]
g ¥ i 1,1 A/B \ i, +2 r . +p i,171,N+
' 22’28, . .
H. . = - 1 [ A L - lll 1,] ]
. ij 1 1[1+8A/B y (B)] Bin 1,3 r.+8
1/2
; 2a1/2 22 ,Ai’lAl'j
: Tig = Big ¥ rap Buy 7 (rgRIAg 148, 55, (4]
¥
,L Bihy,5
h Al,l[l+OA/B A(t)]
i The 2N cquations (48) are solved simultancously as before
f to find the CA(rj’L) and CB(lj’t).
' The current response is represented similar to the chronoap-
K
- erometric casc:
B
4
! i= nl:‘l‘sDA(f;—/l;-]—)
" JR=0

= e va e C e an L e e e e A Y




or in the dimensionless space

0y 1/2
i= nFAD?;fr]? (ZCA) ' (50)
0 r Jr

l=xl=0
Discretizing the flux and inserting the boundcry conditions leads to (6)

1 N+1

) [Al,N+2+j£2 1,jCA(rj,t)-0A/BSA(t)

- I¥6_ .S
rl— ] A/B7 )

1,558 (F3,8)] (51)

’

nFADA[A°]a1/2

[A l
(M-ro) 1+0

a/B5)

(VS
|

+
T A, .c . (r. t)-0
= J

(t)[Al,N+2+j a/BS) (t)

N+1

+
EzAl'jcB(rj't)] (52)

3l

The concentrations cA(ri t) and cB(ri t) found at each time
’ 14
T = (M—ro)zt/aD are usecd in equation (52) to determine the current

as a function of time and hence potential by the relation
(M—ro)ztR'T'
START ¥ ~nFD tst
(M—ro)ztR'T'
nFD

E
(53;;

E + 2VtA - t £t g2t

START

where t is the dimensionless potential sweep reversal time

3
aDTA

t S e e

(M-ro)z




Chronopotentiometry

The chronopotentiometriccaseforfﬂanarelectrodes was described in

a previous paper. For achronopotentiometric response to the simple

reversible charge transfer reaction, we must consider the following

conditions:

[A)

r,0 o,T
[Bl, o = [Bl, @ =0
E + E:/B-B;Tg—'- ln[B]ro
(), - (4
R r, SR r,

i = nFAD (F[A]) = Constant
Al 6r _
R—ro

The new dimensionless parameters are

R-r
t = T/1 r =

with 1 the transition time of the experiment. Insertion of these

values into the differential equation (3) and simplification yields

2
écA -y é ca . 2a GCA
6t Sr r+8 6r
where
a= Bl
(M-xo)‘

The conditions (54-5%) in dimensionless form become

- i e rrestmeto/ilill b SO Srvars- oI - O ettt




cA(r,O) cA(l,t) =1

cB(r,O) cB(l,t) =0

ér ér
Yo Lo

) nFAD[A°] (dCA) nFADl/zal/z nFADl/z[A°]a1/2(ch)
i-= =
r

- dr
ro 0

(M-ro) dr

The flux relation at the electrode is given from (8a)

ch N+2

= = ¢ A, .c, (r.

dr r j=1 1,7°A j,t)
0

ch N+2

—-— = T A, .c. (r. )

dr ro j=1 1,37B""3j,t

Upon entering the known boundary conditions and expanding, and

then substituting these into (59) we have

N+1

cpl0st) =0 - jizach(rj.t)
N+1

cB(O,t) = R - .E ajcB(rj,t)
j=2

with
R i‘i;i I/7 = B1,ne2!
Al,l nFA[AC]ID o ’
R = 1 [ iTl/2

1
A nFA(A°In1/?,1/2
1,1

(599

(60]

(61

“




discretized equations for A and B are thus

ES& = NEZB c . (r. t) + ~2&;‘N;2A (r. t)
dt ri=xi j=1 ij A I, +5 3=1 ij A 3.
(62)
J ESE Nfz 2a N+2
dt ri=xi= jilnijcB(rj't) + F 46 jilAijcB(rj't)

} The known boundary conditions from equations (58) and (61) are

i entcered, and we have

ch N+1
T Q' + af b, (r. t)
1 dt r. =X, 5=2 ij A I3
i1
‘ (63)
t ch . N+1
' = = gqR! + a £ b,.c_ (r. t)
' at | =x, j=2 B3,
‘ i
|
where
Q! =B, Q0+ B + 2% (A, 0+ A L)
; i,l i,N+2 r.+B i,1 i,N+2
i
2A. .R
! ' i,l
Ri = BiaR* T35
i
N b.. = -B., ;a. + B = 2 (A, ;a. - A..)
L ij i, 173 ij  rg+ i, 173 ij
} The usual display of tLhce response is given by
? e (G,L) '
' = _R'T B
' E = EA/B T n .A(O 31 (64)
f
’4
'
where the two concentration terms in brackets are found from equation
(61). The concentration te:ms in (61) are found by integration of the

simultancous cqguation (63) by the mcthods described [1,4,5,9) previously.

dimamasis. &
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Table 1
Time, scc iexacg} ma lsinulatea’ M@
1 » 1072 1.7104 1.7104 3
1 x 1074 0.5411 0.5412
1 x 1073 0.1713 0.1712
~ 1 x 1072 0.0054 0.0054
1 x 1071 0.0017 0.0017
1 x 10° 0.0001 0.0001

Comparison of exact and simulated currents for the sinple
change transfer chronoamperometric experiment. (N = 6

collocation points.) See text for parameters.
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